Noise Equivalent Power (NEP)

Electronic circuits output noise as well as the desired signal; an example would be the hiss heard in a stereo when no music is playing. The noise spectrum has a relatively flat response, and the noise level changes with the square root of the frequency range; for example, if the frequency range doubles, the noise component increases by $\sqrt{2}$ (1.414). The optical input has to be large enough to overcome the noise component of the detector in order to have a measurable signal output. Noise equivalent power (NEP) is a specification that allows a customer to determine the noise component of a detector for their particular wavelength and measurement bandwidth. NEP is the minimum optical power required for an output signal-to-noise ratio (SNR) of 1. This means the signal level and the noise level are the same; an SNR of 10 or larger is recommended. NEP has units of W/$\sqrt{\text{Hz}}$ or W, depending on the whether or not the measurement bandwidth is included.

NEP is calculated from measurement or photodiode parameters such as dark current (the current that flows through a reverse biased photodiode when light is not present). Typical values and noise sources are:

- Non-amplified standard detector: 0.1 pW/$\sqrt{\text{Hz}}$ (dark current)
- High speed detector: 30 pW/$\sqrt{\text{Hz}}$ (noise from internal 50Ω impedance matching resistor)
- Amplified detector: 25 pW/$\sqrt{\text{Hz}}$ (amplifier noise)

EOT’s data sheets provide NEP at a specific wavelength – this value is needed to determine NEP for other wavelengths. An example is shown below for the ET-2030:

Measurement Wavelength: 532nm
Measurement Bandwidth: 800 MHz
Responsivity (R_{λ}) of ET-2030 at 532nm (from graph in data sheet): 0.27 A/W
Responsivity (R_{λ}) of ET-2030 at 830nm (from table in data sheet): 0.47 A/W
Datasheet NEP: 0.01 pW/$\sqrt{\text{Hz}}$

\[
\text{NEP}_{532\text{nm}} = \text{NEP}_{\text{datasheet}} \times \frac{R_{\text{datasheet}}}{R_{532\text{nm}}} = \frac{0.01\text{pW}}{\sqrt{\text{Hz}}} \times \frac{0.47\text{A/W}}{0.27\text{A/W}} = 0.02\text{pW}/\sqrt{\text{Hz}}
\]

Including the bandwidth:

\[
\text{NEP}_{532\text{nm}} = \frac{0.02\text{pW}}{\sqrt{\text{Hz}}} \times \sqrt{(800 \times 10^6\text{Hz})} = 566\text{pW}
\]

For an SNR of 10 the optical power would need to be 5.66 nW (-52.5 dBm). This value would be fine for a spectrum analyzer, but oscilloscopes typically require an output of 1 mV or higher for a minimum value. In practice, this is too low of a value: 10 mV to 20 mV would be an acceptable...
minimum reading. Using the ET-2030 as an example, and working backward from the oscilloscope output of 1mV:

\[
\text{Optical Input} = \frac{\text{Output Voltage}}{\text{Scope Termination}} \times \frac{1}{R_{532nm}} = \frac{0.001V}{50\Omega} \times \frac{W}{0.27A} = 74\mu W
\]